Forecasting consumer confidence through semantic network analysis of online news

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: A. Fronzetti Colladon, G Costante, F Grippa, B Guardabascio, F Ravazzolo

Ngôn ngữ: eng

Ký hiệu phân loại: 303.49 Social forecasts

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 166934

This research studies the impact of online news on social and economic consumer perceptions through semantic network analysis. Using over 1.8 million online articles on Italian media covering four years, we calculate the semantic importance of specific economic-related keywords to see if words appearing in the articles could anticipate consumers' judgments about the economic situation and the Consumer Confidence Index. We use an innovative approach to analyze big textual data, combining methods and tools of text mining and social network analysis. Results show a strong predictive power for the judgments about the current households and national situation. Our indicator offers a complementary approach to estimating consumer confidence, lessening the limitations of traditional survey-based methods.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH