Generalized Autoregressive Moving Average Models with GARCH Errors

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Rong Chen, Han Xiao, Tingguo Zheng

Ngôn ngữ: eng

Ký hiệu phân loại: 688.1 Models and miniatures

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 166941

One of the important and widely used classes of models for non-Gaussian time series is the generalized autoregressive model average models (GARMA), which specifies an ARMA structure for the conditional mean process of the underlying time series. However, in many applications one often encounters conditional heteroskedasticity. In this paper we propose a new class of models, referred to as GARMA-GARCH models, that jointly specify both the conditional mean and conditional variance processes of a general non-Gaussian time series. Under the general modeling framework, we propose three specific models, as examples, for proportional time series, nonnegative time series, and skewed and heavy-tailed financial time series. Maximum likelihood estimator (MLE) and quasi Gaussian MLE (GMLE) are used to estimate the parameters. Simulation studies and three applications are used to demonstrate the properties of the models and the estimation procedures.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH