Learning to agree over large state spaces

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Michele Crescenzi

Ngôn ngữ: eng

Ký hiệu phân loại: 519.3 Game theory

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 166949

We study how a consensus emerges in a finite population of like-minded individuals who are asymmetrically informed about the realization of the true state of the world. Agents observe a private signal about the state and then start exchanging messages. Generalizing the classical model of rational dialogues of Geanakoplos and Polemarchakis (1982) and its subsequent extensions, we dispense with the standard assumption that the state space is a probability space and we do not put any bound on the cardinality of the state space itself or the information partitions. We show that a class of rational dialogues can be found that always lead to consensus provided that three main conditions are met. First, everybody must be able to send messages to everybody else, either directly or indirectly. Second, communication must be reciprocal. Finally, agents need to have the opportunity to engage in dialogues of transfinite length.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH