Dynamic Portfolio Allocation in High Dimensions using Sparse Risk Factors

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Bruno P. C Levy, Hedibert F Lopes

Ngôn ngữ: eng

Ký hiệu phân loại: 003.76 Stochastic systems

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 166951

We propose a fast and flexible method to scale multivariate return volatility predictions up to high-dimensions using a dynamic risk factor model. Our approach increases parsimony via time-varying sparsity on factor loadings and is able to sequentially learn the use of constant or time-varying parameters and volatilities. We show in a dynamic portfolio allocation problem with 452 stocks from the S&P 500 index that our dynamic risk factor model is able to produce more stable and sparse predictions, achieving not just considerable portfolio performance improvements but also higher utility gains for the mean-variance investor compared to the traditional Wishart benchmark and the passive investment on the market index.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH