Truthful Self-Play

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Shohei Ohsawa

Ngôn ngữ: eng

Ký hiệu phân loại: 177.3 Truthfulness, lying, slander, flattery

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167130

Comment: Accepted for publication at ICLR 2023We present a general framework for evolutionary learning to emergent unbiased state representation without any supervision. Evolutionary frameworks such as self-play converge to bad local optima in case of multi-agent reinforcement learning in non-cooperative partially observable environments with communication due to information asymmetry. Our proposed framework is a simple modification of self-play inspired by mechanism design, also known as {\em reverse game theory}, to elicit truthful signals and make the agents cooperative. The key idea is to add imaginary rewards using the peer prediction method, i.e., a mechanism for evaluating the validity of information exchanged between agents in a decentralized environment. Numerical experiments with predator prey, traffic junction and StarCraft tasks demonstrate that the state-of-the-art performance of our framework.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH