Superconsistency of Tests in High Dimensions

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Anders Bredahl Kock, David Preinerstorfer

Ngôn ngữ: eng

Ký hiệu phân loại: 512.5 Linear algebra

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167140

Comment: Typos fixed compared to previous versionTo assess whether there is some signal in a big database, aggregate tests for the global null hypothesis of no effect are routinely applied in practice before more specialized analysis is carried out. Although a plethora of aggregate tests is available, each test has its strengths but also its blind spots. In a Gaussian sequence model, we study whether it is possible to obtain a test with substantially better consistency properties than the likelihood ratio (i.e., Euclidean norm based) test. We establish an impossibility result, showing that in the high-dimensional framework we consider, the set of alternatives for which a test may improve upon the likelihood ratio test -- that is, its superconsistency points -- is always asymptotically negligible in a relative volume sense.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH