Contamination Bias in Linear Regressions

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Paul Goldsmith-Pinkham, Peter Hull, Michal Kolesár

Ngôn ngữ: eng

Ký hiệu phân loại: 155.96 Influence of restrictive environments

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167152

 Comment: 69 pages, including all appendicesWe study regressions with multiple treatments and a set of controls that is flexible enough to purge omitted variable bias. We show that these regressions generally fail to estimate convex averages of heterogeneous treatment effects -- instead, estimates of each treatment's effect are contaminated by non-convex averages of the effects of other treatments. We discuss three estimation approaches that avoid such contamination bias, including the targeting of easiest-to-estimate weighted average effects. A re-analysis of nine empirical applications finds economically and statistically meaningful contamination bias in observational studies
  contamination bias in experimental studies is more limited due to smaller variability in propensity scores.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH