Applying endogenous learning models in energy system optimization

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Marte Fodstad, Jabir Ali Ouassou, Gunhild Reigstad, Julian Straus, Ove Wolfgang

Ngôn ngữ: eng

Ký hiệu phân loại: 333.794 t Renewable energy resources

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167163

Comment: review paper: main article (11 pages), appendices (8 pages), references (4 pages)Conventional energy production based on fossil fuels causes emissions which contribute to global warming. Accurate energy system models are required for a cost-optimal transition to a zero-emission energy system, an endeavor that requires an accurate modeling of cost reductions due to technological learning effects. In this review, we summarize common methodologies for modeling technological learning and associated cost reductions. The focus is on learning effects in hydrogen production technologies due to their importance in a low-carbon energy system, as well as the application of endogenous learning in energy system models. Finally, we present an overview of the learning rates of relevant low-carbon technologies required to model future energy systems.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH