Syncytial therapeutics: Receptor-specific and direct-to-cytosol biologic drug delivery mediated by measles fusion complex.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Victor A Garcia, Brenda M Ogle, Casim A Sarkar

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Netherlands : Journal of controlled release : official journal of the Controlled Release Society , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 167203

This work explores cell-cell fusion mediated by measles virus (MeV) as a potential new cell therapy modality that achieves direct-to-cytosol (DTC) drug delivery. MeV induces receptor-mediated fusion at the cell surface via its hemagglutinin (H) and fusion glycoproteins (F), bypassing endocytic membrane transport, and enabling direct cytosolic mixing between a fusogenic donor and host target cell. Fusion of this type gives rise to large syncytia formed by the inclusion of additional target cells over time. Fusion receptor specificity was first examined in CHO "non-target" and CHO "target" cells exogenously expressing the measles target SLAM (CHO-SLAM) by mono- or co-transfection of each cell type with plasmids encoding MeV-H and MeV-F. Fusion was observed only in CHO-SLAM cells which were co-transfected with both plasmids, which verified receptor-specificity without false-triggering of fusion in co-transfected "non-target" CHO or in MeV-F mono-transfectants of either cell type. Next, CHO donor cells with constitutive mCherry expression were co-transfected with MeV-H and MeV-F, and mCherry-positive syncytia were observed when cells were mixed with CHO-SLAM demonstrating the ability to deliver the mCherry payload via DTC. Increasing the cell dose does not affect the size distribution of resulting syncytia but contributes to a higher total mCherry delivery. Further, control of MeV stoichiometry can modulate the degree of syncytia formation and protein delivery, demonstrating that limiting MeV-H and increasing MeV-F favors fusion and cytosolic delivery. Taken together, these results demonstrate MeV cell-fusion-based, DTC delivery as a robust and tunable system for achieving targeted cytosolic delivery and controlled syncytia formation.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH