Active labour market policies for the long-term unemployed: New evidence from causal machine learning

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Daniel Goller, Tamara Harrer, Michael Lechner, Joachim Wolff

Ngôn ngữ: eng

Ký hiệu phân loại: 331.12 Labor market

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 167219

Active labor market programs are important instruments used by European employment agencies to help the unemployed find work. Investigating large administrative data on German long-term unemployed persons, we analyze the effectiveness of three job search assistance and training programs using Causal Machine Learning. Participants benefit from quickly realizing and long-lasting positive effects across all programs, with placement services being the most effective. For women, we find differential effects in various characteristics. Especially, women benefit from better local labor market conditions. We propose more effective data-driven rules for allocating the unemployed to the respective labor market programs that could be employed by decision-makers.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH