Semiparametric inference for partially linear regressions with Box-Cox transformation

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Daniel Becker, Alois Kneip, Valentin Patilea

Ngôn ngữ: eng

Ký hiệu phân loại: 512.5 Linear algebra

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167224

In this paper, a semiparametric partially linear model in the spirit of Robinson (1988) with Box- Cox transformed dependent variable is studied. Transformation regression models are widely used in applied econometrics to avoid misspecification. In addition, a partially linear semiparametric model is an intermediate strategy that tries to balance advantages and disadvantages of a fully parametric model and nonparametric models. A combination of transformation and partially linear semiparametric model is, thus, a natural strategy. The model parameters are estimated by a semiparametric extension of the so called smooth minimum distance (SmoothMD) approach proposed by Lavergne and Patilea (2013). SmoothMD is suitable for models defined by conditional moment conditions and allows the variance of the error terms to depend on the covariates. In addition, here we allow for infinite-dimension nuisance parameters. The asymptotic behavior of the new SmoothMD estimator is studied under general conditions and new inference methods are proposed. A simulation experiment illustrates the performance of the methods for finite samples.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH