Heterogeneous Treatment Effects in Regression Discontinuity Designs

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ágoston Reguly

Ngôn ngữ: eng

Ký hiệu phân loại: 615.7 Pharmacokinetics

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167243

Comment: 39 pages, 8 tables, 8 figuresThe paper proposes a supervised machine learning algorithm to uncover treatment effect heterogeneity in classical regression discontinuity (RD) designs. Extending Athey and Imbens (2016), I develop a criterion for building an honest "regression discontinuity tree", where each leaf of the tree contains the RD estimate of a treatment (assigned by a common cutoff rule) conditional on the values of some pre-treatment covariates. It is a priori unknown which covariates are relevant for capturing treatment effect heterogeneity, and it is the task of the algorithm to discover them, without invalidating inference. I study the performance of the method through Monte Carlo simulations and apply it to the data set compiled by Pop-Eleches and Urquiola (2013) to uncover various sources of heterogeneity in the impact of attending a better secondary school in Romania.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH