The Role of Contextual Information in Best Arm Identification

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Kaito Ariu, Masahiro Kato

Ngôn ngữ: eng

Ký hiệu phân loại: 611.972 Human anatomy, cytology, histology

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167278

We study the best-arm identification problem with fixed confidence when contextual (covariate) information is available in stochastic bandits. Although we can use contextual information in each round, we are interested in the marginalized mean reward over the contextual distribution. Our goal is to identify the best arm with a minimal number of samplings under a given value of the error rate. We show the instance-specific sample complexity lower bounds for the problem. Then, we propose a context-aware version of the "Track-and-Stop" strategy, wherein the proportion of the arm draws tracks the set of optimal allocations and prove that the expected number of arm draws matches the lower bound asymptotically. We demonstrate that contextual information can be used to improve the efficiency of the identification of the best marginalized mean reward compared with the results of Garivier & Kaufmann (2016). We experimentally confirm that context information contributes to faster best-arm identification.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH