Approximate Core Allocations for Multiple Partners Matching Games

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Qizhi Fang, Tianhang Lu, Han Xiao

Ngôn ngữ: eng

Ký hiệu phân loại: 794.152 Master matches

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167330

 Comment: 12 pagesThe matching game is a cooperative game where the value of every coalition is the maximum revenue of players in the coalition can make by forming pairwise disjoint partners. The multiple partners matching game generalizes the matching game by allowing each player to have more than one possibly repeated partner. In this paper, we study profit-sharing in multiple partners matching games. A central concept for profit-sharing is the core which consists of all possible ways of distributing the profit among individual players such that the grand coalition remains intact. The core of multiple partners matching games may be empty [Deng et al., Algorithmic aspects of the core of combinatorial optimization games, Math. Oper. Res., 1999.]
  even when the core is non-empty, the core membership problem is intractable in general [Biro et al., The stable fixtures problem with payments, Games Econ. Behav., 2018]. Thus we study approximate core allocations upon which a coalition may be paid less than the profit it makes by seceding from the grand coalition. We provide an LP-based mechanism guaranteeing that no coalition is paid less than $2/3$ times the profit it makes on its own. We also show that $2/3$ is the best possible factor relative to the underlying LP-relaxation. Our result generalizes the work of Vazirani [Vazirani, The general graph matching game: approximate core, arXiv, 2021] from matching games to multiple partners matching games.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH