Predicting Exporters with Machine Learning

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Francesca Micocci, Armando Rungi

Ngôn ngữ: eng

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167347

In this contribution, we exploit machine learning techniques to evaluate whether and how close firms are to becoming successful exporters. First, we train and test various algorithms using financial information on both exporters and non-exporters in France in 2010-2018. Thus, we show that we are able to predict the distance of non-exporters from export status. In particular, we find that a Bayesian Additive Regression Tree with Missingness In Attributes (BART-MIA) performs better than other techniques with an accuracy of up to 0.90. Predictions are robust to changes in definitions of exporters and in the presence of discontinuous exporting activity. Eventually, we discuss how our exporting scores can be helpful for trade promotion, trade credit, and assessing aggregate trade potential. For example, back-of-the-envelope estimates show that a representative firm with just below-average exporting scores needs up to 44% more cash resources and up to 2.5 times more capital to get to foreign markets.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH