Inference for the proportional odds cumulative logit model with monotonicity constraints for ordinal predictors and ordinal response

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Javier Espinosa-Brito, Christian Hennig

Ngôn ngữ: eng

Ký hiệu phân loại: 372.79 Elementary education

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167387

The proportional odds cumulative logit model (POCLM) is a standard regression model for an ordinal response. Ordinality of predictors can be incorporated by monotonicity constraints for the corresponding parameters. It is shown that estimators defined by optimization, such as maximum likelihood estimators, for an unconstrained model and for parameters in the interior set of the parameter space of a constrained model are asymptotically equivalent. This is used in order to derive asymptotic confidence regions and tests for the constrained model, involving simple modifications for finite samples. The finite sample coverage probability of the confidence regions is investigated by simulation. Tests concern the effect of individual variables, monotonicity, and a specified monotonicity direction. The methodology is applied on real data related to the assessment of school performance.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH