Estimating high-dimensional Markov-switching VARs

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Kenwin Maung

Ngôn ngữ: eng

Ký hiệu phân loại: 003.76 Stochastic systems

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167495

Maximum likelihood estimation of large Markov-switching vector autoregressions (MS-VARs) can be challenging or infeasible due to parameter proliferation. To accommodate situations where dimensionality may be of comparable order to or exceeds the sample size, we adopt a sparse framework and propose two penalized maximum likelihood estimators with either the Lasso or the smoothly clipped absolute deviation (SCAD) penalty. We show that both estimators are estimation consistent, while the SCAD estimator also selects relevant parameters with probability approaching one. A modified EM-algorithm is developed for the case of Gaussian errors and simulations show that the algorithm exhibits desirable finite sample performance. In an application to short-horizon return predictability in the US, we estimate a 15 variable 2-state MS-VAR(1) and obtain the often reported counter-cyclicality in predictability. The variable selection property of our estimators helps to identify predictors that contribute strongly to predictability during economic contractions but are otherwise irrelevant in expansions. Furthermore, out-of-sample analyses indicate that large MS-VARs can significantly outperform "hard-to-beat" predictors like the historical average.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH