A Unified Frequency Domain Cross-Validatory Approach to HAC Standard Error Estimation

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Clifford M Hurvich, Zhihao Xu

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167614

A unified frequency domain cross-validation (FDCV) method is proposed to obtain a heteroskedasticity and autocorrelation consistent (HAC) standard error. This method enables model/tuning parameter selection across both parametric and nonparametric spectral estimators simultaneously. The candidate class for this approach consists of restricted maximum likelihood-based (REML) autoregressive spectral estimators and lag-weights estimators with the Parzen kernel. Additionally, an efficient technique for computing the REML estimators of autoregressive models is provided. Through simulations, the reliability of the FDCV method is demonstrated, comparing favorably with popular HAC estimators such as Andrews-Monahan and Newey-West.Comment: 22 pages
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH