Evidence Aggregation for Treatment Choice

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Takuya Ishihara, Toru Kitagawa

Ngôn ngữ: eng

Ký hiệu phân loại: 121.65 Evidence and criteria

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167628

 Consider a planner who has limited knowledge of the policy's causal impact on a certain local population of interest due to a lack of data, but does have access to the publicized intervention studies performed for similar policies on different populations. How should the planner make use of and aggregate this existing evidence to make her policy decision? Following Manski (2020
  Towards Credible Patient-Centered Meta-Analysis, \textit{Epidemiology}), we formulate the planner's problem as a statistical decision problem with a social welfare objective, and solve for an optimal aggregation rule under the minimax-regret criterion. We investigate the analytical properties, computational feasibility, and welfare regret performance of this rule. We apply the minimax regret decision rule to two settings: whether to enact an active labor market policy based on 14 randomized control trial studies
  and whether to approve a drug (Remdesivir) for COVID-19 treatment using a meta-database of clinical trials.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH