Dimensionality Reduction and State Space Systems: Forecasting the US Treasury Yields Using Frequentist and Bayesian VARs

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sudiksha Joshi

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167629

Comment: 21 figures and 16 tablesUsing a state-space system, I forecasted the US Treasury yields by employing frequentist and Bayesian methods after first decomposing the yields of varying maturities into its unobserved term structure factors. Then, I exploited the structure of the state-space model to forecast the Treasury yields and compared the forecast performance of each model using mean squared forecast error. Among the frequentist methods, I applied the two-step Diebold-Li, two-step principal components, and one-step Kalman filter approaches. Likewise, I imposed the five different priors in Bayesian VARs: Diffuse, Minnesota, natural conjugate, the independent normal inverse: Wishart, and the stochastic search variable selection priors. After forecasting the Treasury yields for 9 different forecast horizons, I found that the BVAR with Minnesota prior generally minimizes the loss function. I augmented the above BVARs by including macroeconomic variables and constructed impulse response functions with a recursive ordering identification scheme. Finally, I fitted a sign-restricted BVAR with dummy observations.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH