A Partial Order on Preference Profiles

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Wayne Yuan Gao

Ngôn ngữ: eng

Ký hiệu phân loại: 302.13 Social choice

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167652

We propose a theoretical framework under which preference profiles can be meaningfully compared. Specifically, given a finite set of feasible allocations and a preference profile, we first define a ranking vector of an allocation as the vector of all individuals' rankings of this allocation. We then define a partial order on preference profiles and write "$P \geq P^{'}$", if there exists an onto mapping $\psi$ from the Pareto frontier of $P^{'}$ onto the Pareto frontier of $P$, such that the ranking vector of any Pareto efficient allocation $x$ under $P^{'}$ is weakly dominated by the ranking vector of the image allocation $\psi(x)$ under $P$. We provide a characterization of the maximal and minimal elements under the partial order. In particular, we illustrate how an individualistic form of social preferences can be maximal in a specific setting. We also discuss how the framework can be further generalized to incorporate additional economic ingredients.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH