Deep Sequence Modeling: Development and Applications in Asset Pricing

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Lin William Cong, Ke Tang, Jingyuan Wang, Yang Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 001.43 Historical, descriptive, experimental methods

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167656

We predict asset returns and measure risk premia using a prominent technique from artificial intelligence -- deep sequence modeling. Because asset returns often exhibit sequential dependence that may not be effectively captured by conventional time series models, sequence modeling offers a promising path with its data-driven approach and superior performance. In this paper, we first overview the development of deep sequence models, introduce their applications in asset pricing, and discuss their advantages and limitations. We then perform a comparative analysis of these methods using data on U.S. equities. We demonstrate how sequence modeling benefits investors in general through incorporating complex historical path dependence, and that Long- and Short-term Memory (LSTM) based models tend to have the best out-of-sample performance.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH