A Maximum Entropy Copula Model for Mixed Data: Representation, Estimation, and Applications

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mukhopadhyay, Subhadeep

Ngôn ngữ: eng

Ký hiệu phân loại: 003.54 Information theory

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167661

 A new nonparametric model of maximum-entropy (MaxEnt) copula density function is proposed, which offers the following advantages: (i) it is valid for mixed random vector. By `mixed' we mean the method works for any combination of discrete or continuous variables in a fully automated manner
  (ii) it yields a bonafide density estimate with intepretable parameters. By `bonafide' we mean the estimate guarantees to be a non-negative function, integrates to 1
  and (iii) it plays a unifying role in our understanding of a large class of statistical methods. Our approach utilizes modern machinery of nonparametric statistics to represent and approximate log-copula density function via LP-Fourier transform. Several real-data examples are also provided to explore the key theoretical and practical implications of the theory.Comment: Revised and accepted version. Dedication: This paper is dedicated to E. T. Jaynes, the originator of the Maximum Entropy Principle, for his birth centenary. And to the memory of Leo Goodman, a transformative legend of Categorical Data Analysis. This paper is inspired in part to demonstrate how these two modeling philosophies can be connected and united in some ways
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH