Dynamic Selection in Algorithmic Decision-making

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jin Li, Ye Luo, Xiaowei Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 003.56 Decision theory

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167698

 Comment: Main Body: 27 pages, 4 figures, 1 table
  Supplemental Material: 30 pagesThis paper identifies and addresses dynamic selection problems in online learning algorithms with endogenous data. In a contextual multi-armed bandit model, a novel bias (self-fulfilling bias) arises because the endogeneity of the data influences the choices of decisions, affecting the distribution of future data to be collected and analyzed. We propose an instrumental-variable-based algorithm to correct for the bias. It obtains true parameter values and attains low (logarithmic-like) regret levels. We also prove a central limit theorem for statistical inference. To establish the theoretical properties, we develop a general technique that untangles the interdependence between data and actions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH