Multi-agent Bayesian Learning with Best Response Dynamics: Convergence and Stability

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Saurabh Amin, Asuman Ozdaglar, Manxi Wu

Ngôn ngữ: eng

Ký hiệu phân loại: 531.3 Solid dynamics

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 167733

Comment: arXiv admin note: text overlap with arXiv:2010.09128We study learning dynamics induced by strategic agents who repeatedly play a game with an unknown payoff-relevant parameter. In this dynamics, a belief estimate of the parameter is repeatedly updated given players' strategies and realized payoffs using Bayes's rule. Players adjust their strategies by accounting for best response strategies given the belief. We show that, with probability 1, beliefs and strategies converge to a fixed point, where the belief consistently estimates the payoff distribution for the strategy, and the strategy is an equilibrium corresponding to the belief. However, learning may not always identify the unknown parameter because the belief estimate relies on the game outcomes that are endogenously generated by players' strategies. We obtain sufficient and necessary conditions, under which learning leads to a globally stable fixed point that is a complete information Nash equilibrium. We also provide sufficient conditions that guarantee local stability of fixed point beliefs and strategies.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH