Auctions and Peer Prediction for Academic Peer Review

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jamie Morgenstern, Siddarth Srinivasan

Ngôn ngữ: eng

Ký hiệu phân loại: 018.3 +Catalogs arranged by author, main entry, date, or register number

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167736

Peer reviewed publications are considered the gold standard in certifying and disseminating ideas that a research community considers valuable. However, we identify two major drawbacks of the current system: (1) the overwhelming demand for reviewers due to a large volume of submissions, and (2) the lack of incentives for reviewers to participate and expend the necessary effort to provide high-quality reviews. In this work, we adopt a mechanism-design approach to propose improvements to the peer review process, tying together the paper submission and review processes and simultaneously incentivizing high-quality submissions and reviews. In the submission stage, authors participate in a VCG auction for review slots by submitting their papers along with a bid that represents their expected value for having their paper reviewed. For the reviewing stage, we propose a novel peer prediction mechanism (H-DIPP) building on recent work in the information elicitation literature, which incentivizes participating reviewers to provide honest and effortful reviews. The revenue raised in the submission stage auction is used to pay reviewers based on the quality of their reviews in the reviewing stage.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH