On a quantile autoregressive conditional duration model applied to high-frequency financial data

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Narayanaswamy Balakrishnan, Helton Saulo, Roberto Vila

Ngôn ngữ: eng

Ký hiệu phân loại: 332.82 Interest

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167781

Autoregressive conditional duration (ACD) models are primarily used to deal with data arising from times between two successive events. These models are usually specified in terms of a time-varying conditional mean or median duration. In this paper, we relax this assumption and consider a conditional quantile approach to facilitate the modeling of different percentiles. The proposed ACD quantile model is based on a skewed version of Birnbaum-Saunders distribution, which provides better fitting of the tails than the traditional Birnbaum-Saunders distribution, in addition to advancing the implementation of an expectation conditional maximization (ECM) algorithm. A Monte Carlo simulation study is performed to assess the behavior of the model as well as the parameter estimation method and to evaluate a form of residual. A real financial transaction data set is finally analyzed to illustrate the proposed approach.Comment: 29 pages, 5 figuras
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH