Some Impossibility Results for Inference With Cluster Dependence with Large Clusters

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Denis Kojevnikov, Kyungchul Song

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167788

This paper focuses on a setting with observations having a cluster dependence structure and presents two main impossibility results. First, we show that when there is only one large cluster, i.e., the researcher does not have any knowledge on the dependence structure of the observations, it is not possible to consistently discriminate the mean. When within-cluster observations satisfy the uniform central limit theorem, we also show that a sufficient condition for consistent $\sqrt{n}$-discrimination of the mean is that we have at least two large clusters. This result shows some limitations for inference when we lack information on the dependence structure of observations. Our second result provides a necessary and sufficient condition for the cluster structure that the long run variance is consistently estimable. Our result implies that when there is at least one large cluster, the long run variance is not consistently estimable.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH