Variable Selection for Causal Inference via Outcome-Adaptive Random Forest

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Daniel Jacob

Ngôn ngữ: eng

Ký hiệu phân loại: 492.487 Afro-Asiatic languages Semitic languages

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167791

Estimating a causal effect from observational data can be biased if we do not control for self-selection. This selection is based on confounding variables that affect the treatment assignment and the outcome. Propensity score methods aim to correct for confounding. However, not all covariates are confounders. We propose the outcome-adaptive random forest (OARF) that only includes desirable variables for estimating the propensity score to decrease bias and variance. Our approach works in high-dimensional datasets and if the outcome and propensity score model are non-linear and potentially complicated. The OARF excludes covariates that are not associated with the outcome, even in the presence of a large number of spurious variables. Simulation results suggest that the OARF produces unbiased estimates, has a smaller variance and is superior in variable selection compared to other approaches. The results from two empirical examples, the effect of right heart catheterization on mortality and the effect of maternal smoking during pregnancy on birth weight, show comparable treatment effects to previous findings but tighter confidence intervals and more plausible selected variables.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH