Towards Principled Causal Effect Estimation by Deep Identifiable Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Kenji Fukumizu, Pengzhou Wu

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 167915

As an important problem in causal inference, we discuss the estimation of treatment effects (TEs). Representing the confounder as a latent variable, we propose Intact-VAE, a new variant of variational autoencoder (VAE), motivated by the prognostic score that is sufficient for identifying TEs. Our VAE also naturally gives representations balanced for treatment groups, using its prior. Experiments on (semi-)synthetic datasets show state-of-the-art performance under diverse settings, including unobserved confounding. Based on the identifiability of our model, we prove identification of TEs under unconfoundedness, and also discuss (possible) extensions to harder settings.Comment: Fully updated. Largely improve clarity, add identification under unconfoundedness (Sec. 4.2), and more. arXiv admin note: substantial text overlap with arXiv:2101.06662
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH