Dyadic double/debiased machine learning for analyzing determinants of free trade agreements

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Harold D Chiang, Yukun Ma, Joel Rodrigue, Yuya Sasaki

Ngôn ngữ: eng

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167978

This paper presents novel methods and theories for estimation and inference about parameters in econometric models using machine learning for nuisance parameters estimation when data are dyadic. We propose a dyadic cross fitting method to remove over-fitting biases under arbitrary dyadic dependence. Together with the use of Neyman orthogonal scores, this novel cross fitting method enables root-$n$ consistent estimation and inference robustly against dyadic dependence. We illustrate an application of our general framework to high-dimensional network link formation models. With this method applied to empirical data of international economic networks, we reexamine determinants of free trade agreements (FTA) viewed as links formed in the dyad composed of world economies. We document that standard methods may lead to misleading conclusions for numerous classic determinants of FTA formation due to biased point estimates or standard errors which are too small.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH