$\beta$-Intact-VAE: Identifying and Estimating Causal Effects under Limited Overlap

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Kenji Fukumizu, Pengzhou Wu

Ngôn ngữ: eng

Ký hiệu phân loại: 003.54 Information theory

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 167989

 As an important problem in causal inference, we discuss the identification and estimation of treatment effects (TEs) under limited overlap
  that is, when subjects with certain features belong to a single treatment group. We use a latent variable to model a prognostic score which is widely used in biostatistics and sufficient for TEs
  i.e., we build a generative prognostic model. We prove that the latent variable recovers a prognostic score, and the model identifies individualized treatment effects. The model is then learned as \beta-Intact-VAE--a new type of variational autoencoder (VAE). We derive the TE error bounds that enable representations balanced for treatment groups conditioned on individualized features. The proposed method is compared with recent methods using (semi-)synthetic datasets.Comment: Updated version of the NeurIPS 2021 submission (https://openreview.net/forum?id=Z3yd722b5X5). Largely improve readability and the presentation of experimental results. arXiv admin note: text overlap with arXiv:2109.15062, arXiv:2101.06662
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH