Auction design with ambiguity: Optimality of the first-price and all-pay auctions

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sosung Baik, Sung-Ha Hwang

Ngôn ngữ: eng

Ký hiệu phân loại: 018.3 +Catalogs arranged by author, main entry, date, or register number

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 168025

 We study the optimal auction design problem when bidders' preferences follow the maxmin expected utility model. We suppose that each bidder's set of priors consists of beliefs close to the seller's belief, where "closeness" is defined by a divergence. For a given allocation rule, we identify a class of optimal transfer candidates, named the win-lose dependent transfers, with the following property: each type of bidder's transfer conditional on winning or losing is independent of the competitor's type report. Our result reduces the infinite-dimensional optimal transfer problem to a two-dimensional optimization problem. By solving the reduced problem, we find that: (i) among efficient mechanisms with no premiums for losers, the first-price auction is optimal
  and, (ii) among efficient winner-favored mechanisms where each bidder pays smaller amounts when she wins than loses: the all-pay auction is optimal. Under a simplifying assumption, these two auctions remain optimal under the endogenous allocation rule.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH