On Parameter Estimation in Unobserved Components Models subject to Linear Inequality Constraints

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Joshua C. C Chan, Abhishek K Umrawal

Ngôn ngữ: eng

Ký hiệu phân loại: 526.5 Mathematical geography

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 168066

Comment: 9 pages, 6 figures, Accepted for presentation at MLECON: Machine Learning meets Econometrics workshop. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, AustraliaWe propose a new \textit{quadratic programming-based} method of approximating a nonstandard density using a multivariate Gaussian density. Such nonstandard densities usually arise while developing posterior samplers for unobserved components models involving inequality constraints on the parameters. For instance, Chan et al. (2016) provided a new model of trend inflation with linear inequality constraints on the stochastic trend. We implemented the proposed quadratic programming-based method for this model and compared it to the existing approximation. We observed that the proposed method works as well as the existing approximation in terms of the final trend estimates while achieving gains in terms of sample efficiency.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH