Translational modeling of BTZ-043 in predicting phase IIA efficacy and evaluating drug-drug interactions with BPaL in murine models.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Julia Dreisbach, Jacqueline P Ernest, Lorenzo Flori, Michael Hoelscher, Christoph Hölscher, Bernard Ngara, Eric L Nuermberger, Rada Savic, Heena Soni, Sandeep Tyagi, Rob Christiaan van Wijk, Kerstin Walter

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : The Journal of infectious diseases , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 168078

INTRODUCTION: BTZ-043 is a promising novel drug candidate for anti-tuberculosis treatment. This study aimed to apply a previously developed mouse-to-human translational modeling platform for anti-tuberculosis drugs to predict phase IIA outcomes for BTZ-043 in humans and evaluate the impact of observed drug-drug interactions on the contribution of BTZ-043 to combotherapy in a mouse model. METHODS: The study utilized data from mouse experiments for BTZ-043 monotherapy and combotherapy with bedaquiline, pretomanid, and linezolid, and clinical information for BTZ-043 monotherapy. The translational models were applied to predict the colony-forming units as a measure of efficacy in humans treated with BTZ-043 monotherapy and evaluate the effect of BTZ-043 on the pharmacokinetics-pharmacodynamics of combotherapy bedaquiline, pretomanid, and linezolid. RESULTS: The mouse-pharmacokinetic and mouse-pharmacodynamic data for BTZ-043 monotherapy were best described by two-compartmental and direct Emax models, respectively. The model-based prediction of efficacy in humans was comparable to the observed phase IIA efficacy. Single-compartmental models, developed separately, best described the mouse-pharmacokinetic data for bedaquiline, pretomanid, and linezolid in combotherapy. Co-administration with BTZ-043 was associated with at least a 2-fold reduction in bedaquiline, pretomanid, and linezolid exposures in mice, and model-based simulations suggested that the observed decreases in exposure to these drugs would have resulted in even lower efficacy than what was observed when BPaL is co-administered with BTZ-043. CONCLUSION: The translational modeling platform adequately predicted the efficacy of BTZ-043 monotherapy. In the absence of drug-drug interactions, co-administration of BTZ-043 with bedaquiline, pretomanid, and linezolid in combotherapy is predicted to improve treatment efficacy.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH