Inference in Regression Discontinuity Designs with High-Dimensional Covariates

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Alexander Kreiß, Christoph Rothe

Ngôn ngữ: eng

Ký hiệu phân loại: 005.745 Computer programming, programs, data

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 168080

We study regression discontinuity designs in which many predetermined covariates, possibly much more than the number of observations, can be used to increase the precision of treatment effect estimates. We consider a two-step estimator which first selects a small number of "important" covariates through a localized Lasso-type procedure, and then, in a second step, estimates the treatment effect by including the selected covariates linearly into the usual local linear estimator. We provide an in-depth analysis of the algorithm's theoretical properties, showing that, under an approximate sparsity condition, the resulting estimator is asymptotically normal, with asymptotic bias and variance that are conceptually similar to those obtained in low-dimensional settings. Bandwidth selection and inference can be carried out using standard methods. We also provide simulations and an empirical application.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH