Multiple-index Nonstationary Time Series Models: Robust Estimation Theory and Practice

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Chaohua Dong, Jiti Gao, Bin Peng, Yundong Tu

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 168139

This paper proposes a class of parametric multiple-index time series models that involve linear combinations of time trends, stationary variables and unit root processes as regressors. The inclusion of the three different types of time series, along with the use of a multiple-index structure for these variables to circumvent the curse of dimensionality, is due to both theoretical and practical considerations. The M-type estimators (including OLS, LAD, Huber's estimator, quantile and expectile estimators, etc.) for the index vectors are proposed, and their asymptotic properties are established, with the aid of the generalized function approach to accommodate a wide class of loss functions that may not be necessarily differentiable at every point. The proposed multiple-index model is then applied to study the stock return predictability, which reveals strong nonlinear predictability under various loss measures. Monte Carlo simulations are also included to evaluate the finite-sample performance of the proposed estimators.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH