Leveraging Causal Graphs for Blocking in Randomized Experiments

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Abhishek Kumar Umrawal

Ngôn ngữ: eng

Ký hiệu phân loại: 511.5 Graph theory

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 168148

 Comment: 22 pages, 6 figures, and 1 table
  Accepted for presentation at the 2nd Conference on Causal Learning and Reasoning (CLeaR 2023), T\"ubingen, Germany
  To be published in the Proceedings of Machine Learning Research (PMLR)Randomized experiments are often performed to study the causal effects of interest. Blocking is a technique to precisely estimate the causal effects when the experimental material is not homogeneous. It involves stratifying the available experimental material based on the covariates causing non-homogeneity and then randomizing the treatment within those strata (known as blocks). This eliminates the unwanted effect of the covariates on the causal effects of interest. We investigate the problem of finding a stable set of covariates to be used to form blocks, that minimizes the variance of the causal effect estimates. Using the underlying causal graph, we provide an efficient algorithm to obtain such a set for a general semi-Markovian causal model.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH