Bootstrap inference for panel data quantile regression

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Antonio F Galvao, Thomas Parker, Zhijie Xiao

Ngôn ngữ: eng

Ký hiệu phân loại: 330.18 Economics

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 168165

This paper develops bootstrap methods for practical statistical inference in panel data quantile regression models with fixed effects. We consider random-weighted bootstrap resampling and formally establish its validity for asymptotic inference. The bootstrap algorithm is simple to implement in practice by using a weighted quantile regression estimation for fixed effects panel data. We provide results under conditions that allow for temporal dependence of observations within individuals, thus encompassing a large class of possible empirical applications. Monte Carlo simulations provide numerical evidence the proposed bootstrap methods have correct finite sample properties. Finally, we provide an empirical illustration using the environmental Kuznets curve.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH