Dynamic treatment effects: high-dimensional inference under model misspecification

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jelena Bradic, Weijie Ji, Yuqian Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 168205

Estimating dynamic treatment effects is crucial across various disciplines, providing insights into the time-dependent causal impact of interventions. However, this estimation poses challenges due to time-varying confounding, leading to potentially biased estimates. Furthermore, accurately specifying the growing number of treatment assignments and outcome models with multiple exposures appears increasingly challenging to accomplish. Double robustness, which permits model misspecification, holds great value in addressing these challenges. This paper introduces a novel "sequential model doubly robust" estimator. We develop novel moment-targeting estimates to account for confounding effects and establish that root-$N$ inference can be achieved as long as at least one nuisance model is correctly specified at each exposure time, despite the presence of high-dimensional covariates. Although the nuisance estimates themselves do not achieve root-$N$ rates, the carefully designed loss functions in our framework ensure final root-$N$ inference for the causal parameter of interest. Unlike off-the-shelf high-dimensional methods, which fail to deliver robust inference under model misspecification even within the doubly robust framework, our newly developed loss functions address this limitation effectively.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH