Large Order-Invariant Bayesian VARs with Stochastic Volatility

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Joshua C. C Chan, Gary Koop, Xuewen Yu

Ngôn ngữ: eng

Ký hiệu phân loại: 003.76 Stochastic systems

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 168210

Many popular specifications for Vector Autoregressions (VARs) with multivariate stochastic volatility are not invariant to the way the variables are ordered due to the use of a Cholesky decomposition for the error covariance matrix. We show that the order invariance problem in existing approaches is likely to become more serious in large VARs. We propose the use of a specification which avoids the use of this Cholesky decomposition. We show that the presence of multivariate stochastic volatility allows for identification of the proposed model and prove that it is invariant to ordering. We develop a Markov Chain Monte Carlo algorithm which allows for Bayesian estimation and prediction. In exercises involving artificial and real macroeconomic data, we demonstrate that the choice of variable ordering can have non-negligible effects on empirical results. In a macroeconomic forecasting exercise involving VARs with 20 variables we find that our order-invariant approach leads to the best forecasts and that some choices of variable ordering can lead to poor forecasts using a conventional, non-order invariant, approach.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH