Optimized Inference in Regression Kink Designs

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Majed Dodin

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 168241

Comment: 53 pages,5 figuresWe propose a method to remedy finite sample coverage problems and improve upon the efficiency of commonly employed procedures for the construction of nonparametric confidence intervals in regression kink designs. The proposed interval is centered at the half-length optimal, numerically obtained linear minimax estimator over distributions with Lipschitz constrained conditional mean function. Its construction ensures excellent finite sample coverage and length properties which are demonstrated in a simulation study and an empirical illustration. Given the Lipschitz constant that governs how much curvature one plausibly allows for, the procedure is fully data driven, computationally inexpensive, incorporates shape constraints and is valid irrespective of the distribution of the assignment variable.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH