Structural Sieves

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Konrad Menzel

Ngôn ngữ: eng

Ký hiệu phân loại: 448.2 Standard French usage (Prescriptive linguistics) Applied linguistics

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 168302

This paper explores the use of deep neural networks for semiparametric estimation of economic models of maximizing behavior in production or discrete choice. We argue that certain deep networks are particularly well suited as a nonparametric sieve to approximate regression functions that result from nonlinear latent variable models of continuous or discrete optimization. Multi-stage models of this type will typically generate rich interaction effects between regressors ("inputs") in the regression function so that there may be no plausible separability restrictions on the "reduced-form" mapping form inputs to outputs to alleviate the curse of dimensionality. Rather, economic shape, sparsity, or separability restrictions either at a global level or intermediate stages are usually stated in terms of the latent variable model. We show that restrictions of this kind are imposed in a more straightforward manner if a sufficiently flexible version of the latent variable model is in fact used to approximate the unknown regression function.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH