Gaussian Process Vector Autoregressions and Macroeconomic Uncertainty

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Niko Hauzenberger, Florian Huber, Massimiliano Marcellino, Nico Petz

Ngôn ngữ: eng

Ký hiệu phân loại: 339.5 Macroeconomic policy

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 168311

 Comment: JEL: C11, C14, C32, E32
  KEYWORDS: Bayesian non-parametrics, non-linear vector autoregressions, asymmetric uncertainty shocksWe develop a non-parametric multivariate time series model that remains agnostic on the precise relationship between a (possibly) large set of macroeconomic time series and their lagged values. The main building block of our model is a Gaussian process prior on the functional relationship that determines the conditional mean of the model, hence the name of Gaussian process vector autoregression (GP-VAR). A flexible stochastic volatility specification is used to provide additional flexibility and control for heteroskedasticity. Markov chain Monte Carlo (MCMC) estimation is carried out through an efficient and scalable algorithm which can handle large models. The GP-VAR is illustrated by means of simulated data and in a forecasting exercise with US data. Moreover, we use the GP-VAR to analyze the effects of macroeconomic uncertainty, with a particular emphasis on time variation and asymmetries in the transmission mechanisms.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH