Weighted Fairness Notions for Indivisible Items Revisited

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mithun Chakraborty, Erel Segal-Halevi, Warut Suksompong

Ngôn ngữ: eng

Ký hiệu phân loại: 512.88 Algebra

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 168330

 Comment: Appears in the 36th AAAI Conference on Artificial Intelligence (AAAI), 2022We revisit the setting of fairly allocating indivisible items when agents have different weights representing their entitlements. First, we propose a parameterized family of relaxations for weighted envy-freeness and the same for weighted proportionality
  the parameters indicate whether smaller-weight or larger-weight agents should be given a higher priority. We show that each notion in these families can always be satisfied, but any two cannot necessarily be fulfilled simultaneously. We then introduce an intuitive weighted generalization of maximin share fairness and establish the optimal approximation of it that can be guaranteed. Furthermore, we characterize the implication relations between the various weighted fairness notions introduced in this and prior work, and relate them to the lower and upper quota axioms from apportionment.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH