Risk and optimal policies in bandit experiments

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Karun Adusumilli

Ngôn ngữ: eng

Ký hiệu phân loại: 003.56 Decision theory

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 168369

 We provide a decision theoretic analysis of bandit experiments under local asymptotics. Working within the framework of diffusion processes, we define suitable notions of asymptotic Bayes and minimax risk for these experiments. For normally distributed rewards, the minimal Bayes risk can be characterized as the solution to a second-order partial differential equation (PDE). Using a limit of experiments approach, we show that this PDE characterization also holds asymptotically under both parametric and non-parametric distributions of the rewards. The approach further describes the state variables it is asymptotically sufficient to restrict attention to, and thereby suggests a practical strategy for dimension reduction. The PDEs characterizing minimal Bayes risk can be solved efficiently using sparse matrix routines or Monte-Carlo methods. We derive the optimal Bayes and minimax policies from their numerical solutions. These optimal policies substantially dominate existing methods such as Thompson sampling
  the risk of the latter is often twice as high.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH