Envelope theorem and discontinuous optimisation: the case of positioning choice problems

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jean-Gabriel Lauzier

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 168374

This article examines differentiability properties of the value function of positioning choice problems, a class of optimisation problems in finite-dimensional Euclidean spaces. We show that positioning choice problems' value function is always almost everywhere differentiable even when the objective function is discontinuous. To obtain this result we first show that the Dini superdifferential is always well-defined for the maxima of positioning choice problems. This last property allows to state first-order necessary conditions in terms of Dini supergradients. We then prove our main result, which is an ad-hoc envelope theorem for positioning choice problems. Lastly, after discussing necessity of some key assumptions, we conjecture that similar theorems might hold in other spaces as well.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH