Reinforcing RCTs with Multiple Priors while Learning about External Validity

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Frederico Finan, Demian Pouzo

Ngôn ngữ: eng

Ký hiệu phân loại: 614.472 Forensic medicine; incidence of injuries, wounds, disease; public preventive medicine

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 168400

This paper introduces a framework for incorporating prior information into the design of sequential experiments. These sources may include past experiments, expert opinions, or the experimenter's intuition. We model the problem using a multi-prior Bayesian approach, mapping each source to a Bayesian model and aggregating them based on posterior probabilities. Policies are evaluated on three criteria: learning the parameters of payoff distributions, the probability of choosing the wrong treatment, and average rewards. Our framework demonstrates several desirable properties, including robustness to sources lacking external validity, while maintaining strong finite sample performance.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH