Algorithm Design: A Fairness-Accuracy Frontier

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Annie Liang, Jay Lu, Xiaosheng Mu, Kyohei Okumura

Ngôn ngữ: eng

Ký hiệu phân loại: 003.56 Decision theory

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 168410

Algorithm designers increasingly optimize not only for accuracy, but also for the fairness of the algorithm across pre-defined groups. We study the tradeoff between fairness and accuracy for any given set of inputs to the algorithm. We propose and characterize a fairness-accuracy frontier, which consists of the optimal points across a broad range of preferences over fairness and accuracy. Our results identify a simple property of the inputs, group-balance, which qualitatively determines the shape of the frontier. We further study an information-design problem where the designer flexibly regulates the inputs (e.g., by coarsening an input or banning its use) but the algorithm is chosen by another agent. Whether it is optimal to ban an input generally depends on the designer's preferences. But when inputs are group-balanced, then excluding group identity is strictly suboptimal for all designers, and when the designer has access to group identity, then it is strictly suboptimal to exclude any informative input.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH