Nested Nonparametric Instrumental Variable Regression: Long Term, Mediated, and Time Varying Treatment Effects

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Isaac Meza, Rahul Singh

Ngôn ngữ: eng

Ký hiệu phân loại: 003.75 Nonlinear systems

Thông tin xuất bản: 2021

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 168459

 Several causal parameters in short panel data models are scalar summaries of a function called a nested nonparametric instrumental variable regression (nested NPIV). Examples include long term, mediated, and time varying treatment effects identified using proxy variables. However, it appears that no prior estimators or guarantees for nested NPIV exist, preventing flexible estimation and inference for these causal parameters. A major challenge is compounding ill posedness due to the nested inverse problems. We analyze adversarial estimators of nested NPIV, and provide sufficient conditions for efficient inference on the causal parameter. Our nonasymptotic analysis has three salient features: (i) introducing techniques that limit how ill posedness compounds
  (ii) accommodating neural networks, random forests, and reproducing kernel Hilbert spaces
  and (iii) extending to causal functions, e.g. long term heterogeneous treatment effects. We measure long term heterogeneous treatment effects of Project STAR and mediated proximal treatment effects of the Job Corps.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH